metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zi-Lu Chen,* Yu-Zhen Zhang and Fu-Pei Liang

College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China

Correspondence e-mail: chenziluczl@yahoo.co.uk

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.005 Å Disorder in solvent or counterion R factor = 0.041 wR factor = 0.119 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichloro(1,10-phenanthroline)(benzene-1,2diamine)nickel(II) methanol solvate

The complex molecule of the title compound, $[NiCl_2(C_6H_8N_2)(C_{12}H_8N_2)]\cdot CH_4O$, has twofold rotation symmetry. The complex has a distorted octahedral NiCl_2N_4 coordination. Hydrogen-bonding and $\pi-\pi$ stacking interactions help to stabilize the crystal structure. Received 24 April 2006 Accepted 6 May 2006

Comment

The use of diamine complexes as hydrogenation catalysts or precatalysts has been reported previously (Noyori *et al.*, 2001; Haack *et al.*, 1997; Ohkuma *et al.*, 2002; Hedberg *et al.*, 2005; Ito *et al.*, 2001). In order to investigate the application of diamine complexes of Ni^{II} as hydrogenation catalysts, we have prepared the title complex, (I), and report here its structure.

The molecular structure of (I) is shown in Fig. 1. The molecule has a twofold rotation symmetry; the Ni^{II} ion and midpoints of the C3–C3A and C9–C9A bonds [symmetry code: (A) 2 - x, $y, \frac{1}{2} - z$] are located on a twofold axis. The Ni^{II} ion is coordinated by two Cl⁻ anions and four N atoms in a distorted octahedral geometry (Table 1). The parallel phenanthroline rings of neighboring complexes are partially overlapped with a face-to-face separation of 3.463 (3) Å, indicating the existence of π - π stacking. Hydrogen-bonding and π - π stacking interactions (Table 2) help to stabilize the crystal structure (Fig. 2).

Experimental

 $NiCl_2 \cdot 6H_2O$ (1 mmol), 1,10-phenanthroline (1 mmol) and 1,2-phenylenediamine (1 mmol) were dissolved in methanol (12 ml). The solution was transferred into a 23 ml Teflon-lined autoclave and heated at 433 K for 80 h. The autoclave was then cooled over a period of 30 h to give purple single crystals of (I).

Crystal data $[NiCl_2(C_6H_8N_2)(C_{12}H_8N_2)]\cdot CH_4O$ Z = 4 $D_r = 1.461 \text{ Mg m}^{-3}$ $M_{\rm m} = 450.00$ Monoclinic, C2/c Mo $K\alpha$ radiation a = 13.898 (4) Å $\mu = 1.23 \text{ mm}^{-1}$ T = 298 (2) K b = 18.246 (5) Å c = 10.015 (3) Å Block, purple $0.26 \times 0.22 \times 0.17 \text{ mm}$ $\beta = 126.313(3)^{\circ}$ $V = 2046.4 (10) \text{ Å}^3$

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (A) 2 - x, y, $\frac{1}{2} - z$].

Data collection

Bruker SMART CCD area-detector	5191 measured reflections
diffractometer	1794 independent reflections
φ and ω scans	1204 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.034$
(SADABS; Bruker, 1998)	$\theta_{\rm max} = 25.0^{\circ}$
$T_{\min} = 0.741, \ T_{\max} = 0.819$	
T 0	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0592P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 1.4849P]
$wR(F^2) = 0.119$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
1794 reflections	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
132 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

Ni1-N1	2.080 (3)	Ni1-Cl1	2.4671 (12)
Ni1-N2	2.077 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···Cl1 ⁱ	0.90	2.49	3.267 (3)	144
$O1-H1\cdots Cl1^{ii}$	0.82	2.36	3.168 (10)	171

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y + 1, -z.

Figure 2 A packing diagram, with dashed lines indicating hydrogen bonds.

The methanol solvent molecule is disordered over a twofold axis and its occupancy was fixed at 0.5 for the unique location. H atoms of the methanol molecule were located in a difference Fourier map and refined as riding with O-H = 0.82, C-H = 0.96 Å and with $U_{iso}(H) =$ $1.2U_{eq}(O,C)$. Other H atoms were placed in calculated positions, with N-H = 0.90 Å and C-H = 0.93 Å, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(N,C)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

We thank the Scientific Research Foundation of Guangxi Normal University and the Science Foundation of Guangxi (Guikeqing 0542021), China.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1998). SMART (Version 5.01), SAINT (Versions 5.01) and SADABS

- (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Haack, K.-J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 285–288.
- Hedberg, C., Källström, K., Arvidsson, P. I., Brandt, P. & Andersson, P. G. (2005). J. Am. Chem. Soc. 127, 15083–15090.
- Ito, M., Hirakawa, M., Murata, K. & Ikaraya, T. (2001). Organometallics, 20, 379–381.
- Noyori, R., Yamakawa, M. & Hashiguchi, S. (2001). J. Org. Chem. 66, 7931–7944.
- Ohkuma, T., Koizumo, M., Muniz, K., Hilt, G., Kabuto, C. & Noyori, R. (2002). J. Am. Chem. Soc. **124**, 6508–6509.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.